A convergent adaptive finite element method for elliptic Dirichlet boundary control problems
نویسندگان
چکیده
منابع مشابه
Error Analysis for a Finite Element Approximation of Elliptic Dirichlet Boundary Control Problems
We consider the Galerkin finite element approximation of an elliptic Dirichlet boundary control model problem governed by the Laplacian operator. The functional theoretical setting of this problem uses L2 controls and a “very weak” formulation of the state equation. However, the corresponding finite element approximation uses standard continuous trial and test functions. For this approximation,...
متن کاملAn energy space finite element approach for elliptic Dirichlet boundary control problems
In this paper we present a finite element analysis for a Dirichlet boundary control problem where the Dirichlet control is considered in the energy space H1/2(Γ). As an equivalent norm in H1/2(Γ) we use a norm which is induced by a stabilized hypersingular boundary integral operator. The analysis is based on the mapping properties of the solution operators related to the primal and adjoint boun...
متن کاملFinite Element Approximation of Elliptic Dirichlet Optimal Control Problems
In this paper, we present a priori error analysis for the finite element discretization of elliptic optimal control problems, where a finite dimensional control variable enters the Dirichlet boundary conditions. The analysis of finite element approximations of optimization problems governed by partial differential equations is an area of active research, see, e.g., [1, 12, 17, 18]. The consider...
متن کاملAn Adaptive Finite Element Method for Linear Elliptic Problems
We propose an adaptive finite element method for linear elliptic problems based on an optimal maximum norm error estimate. The algorithm produces a sequence of successively refined meshes with a final mesh on which a given error tolerance is satisfied. In each step the refinement to be made is determined by locally estimating the size of certain derivatives of the exact solution through compute...
متن کاملAdaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems
In this paper, sharp a posteriori error estimators are derived for a class of distributed elliptic optimal control problems. These error estimators are shown to be useful in adaptive finite element approximation for the optimal control problems and are implemented in the adaptive approach. Our numerical results indicate that the sharp error estimators work satisfactorily in guiding the mesh adj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IMA Journal of Numerical Analysis
سال: 2018
ISSN: 0272-4979,1464-3642
DOI: 10.1093/imanum/dry051